<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      代寫AIML 2023-2024 Coursework

      時間:2024-03-17  來源:  作者: 我要糾錯


      AIML 2023-2024 Coursework
      March 12, 2024
        Figure 1: Convolutional neural network for coursework assignment.
      Problem The goal of this take-home assignment is to implement, in Python, a simple two-layer convolutional neural network (CNN) with five inputs x1, . . . , x5, four hidden nodes z1, . . . , z4 and one output y with ReLU activations, according to the diagram shown in Figure 1. The hidden layer and output of the CNN is to be computed along with the gradient of the hidden layer and output with respect to parameter w1. The values oftheparameterswillbew1 =1.2,w2 =−0.2,v1 =−0.3,v2 =0.6,v3 =1.3andv4 =−1.5.
      Instructions The CNN implementation is to be computed using a single Python function in single Python file. The interface to the function should be in the precise format,
      y, z = convnet(x) (1)
      where x = [x1, x2, x3, x4, x5] is a list of five numerical inputs (for example, a set of real numbers x=[0.3,−1.5,0.7,2.1,0.1]), and it should return the value of y as a number of the type dual and, z=[z1,z2,z3,z4] as a list of four numbers of type dual defined in the course code module ad.py. Therefore, when testing, you should expect to import this module. The implementation should use the specific values of the weight parameters given above.
      Submission TopreparethePythoncodefileforsubmission,itmustbenamedintheformatinitials_studentid.py, for instance if your initials are ’AJD’ and your ID is 5716631 then your file should be named ajd_5716631.py. Submit the file through the Assignments page on Canvas. The deadline for submissions is 12pm UK time, 21st March 2024.
      Marking The function will be marked automatically by calling it inside Python, and checking the results against a model solution. A fully correct solution will receive 20 marks. A solution which has a partially correct
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:代寫COMP3411/9814 Bridge Puzzle編程代做
    • 下一篇:COMP2207 代做、R 程序設計代寫
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • NBA直播 短信驗證碼平臺 幣安官網下載 歐冠直播 WPS下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 亚洲a∨无码男人的天堂| 无码人妻少妇伦在线电影| 久久久久亚洲AV无码专区网站| 国产精品白浆在线观看无码专区| 狠狠躁天天躁中文字幕无码 | 亚洲AV无码一区二区三区人| 无码中文字幕一区二区三区| 久久中文字幕无码专区| 久久亚洲精品无码VA大香大香| 国产成人年无码AV片在线观看| 亚洲国产av高清无码| 潮喷失禁大喷水aⅴ无码| 久久AV无码精品人妻糸列| 中文字幕丰满乱子无码视频| 国产精品无码一区二区三区不卡| 日韩精品专区AV无码| 东京热人妻无码人av| 少妇中文无码高清| 亚洲爆乳无码专区www| 国产乱妇无码大片在线观看| 亚洲AV无码一区二区乱孑伦AS| 亚洲无码高清在线观看 | 亚洲中文字幕无码亚洲成A人片| 在线精品自拍无码| 国产精品va无码免费麻豆| 无码中文人妻在线一区二区三区| 四虎成人精品无码| 亚洲精品无码不卡| 人妻丰满熟妇av无码区不卡| 久久午夜无码免费| 日韩精品无码一区二区中文字幕| 亚洲热妇无码AV在线播放| 亚洲熟妇无码八AV在线播放| 国模无码人体一区二区 | 国产成人AV一区二区三区无码| 久久AV无码精品人妻出轨| 亚洲av成人中文无码专区| 亚洲中文字幕久久精品无码A | 国产精品免费无遮挡无码永久视频 | 无码区国产区在线播放| 亚洲乱码无码永久不卡在线|