<samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
<ul id="e4iaa"></ul>
<blockquote id="e4iaa"><tfoot id="e4iaa"></tfoot></blockquote>
    • <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp>
      <ul id="e4iaa"></ul>
      <samp id="e4iaa"><tbody id="e4iaa"></tbody></samp><ul id="e4iaa"></ul>
      <ul id="e4iaa"></ul>
      <th id="e4iaa"><menu id="e4iaa"></menu></th>

      CS 161代做、Java/Python程序代寫

      時間:2024-04-25  來源:  作者: 我要糾錯



      CS 161, Spring 2024: Homework 2
      Homework 2: NFAs and Regular Expressions
      0. (Ungraded exercise) We rushed/didn’t get to the exercises at the end of worksheet 3
      (copied below for convenience). Make sure you understand what is wrong with these
      proofs.
      (a) Here is a false statement with a bad proof. What is wrong with the proof?
      Theorem (Not actually true). Every binary language is regular.
      Proof. Let A be any language. Here is a DFA M:
      M q0
      0,1
      Note that any string in A is accepted by this DFA. Thus, this DFA recognizes A,
      so A is regular.
      (b) Here is a false statement with a bad proof. What is wrong with the proof?
      Theorem (Not actually true). The language A = {00, 11} is not regular.
      Proof. Here is a DFA M:
      M q0 q1
      0 1
      1
      0
      The string 11, which is in A, is not accepted by this DFA. Thus, the DFA M does
      not recognize A, so A is not regular.
      1. (10 points) Let L be the language of binary strings with at least two 0s or at least
      three 1s.
      (a) (5 points) Draw a state diagram for an NFA that recognizes L.
      (b) (5 points) Recall that an NFA is a 5-tuple N = (Q, Σ, δ, q0, F) for finite set of states
      Q, finite set of alphabet characters Σ, transition function δ : Q × Σε → P(Q),
      start state q0 ∈ Q, and accept states F ⊂ Q. Describe your NFA as a 5-tuple.
      2. (10 points) Prove the following theorem by generalizing the construction from Worksheet 6.
      Theorem. The set of regular languages are closed under concatenation.
      (c) Sara Krehbiel, Ray Li 1
      CS 161, Spring 2024: Homework 2
      That is, prove that, for any two regular languages A and B, the language A ◦ B =
      {ab : a ∈ A : b ∈ B} is regular.
      3. (5 points) Consider the NFA N = ({1, 2, 3}, {0, 1}, δ, 1, {3}) with δ as depicted below (this is the same one from Quiz 6). Give a regular expression for the language
      recognized by this NFA.
      N 1 2 3
      ε
      1
      0
      1 0
      4. (10 points) Find an NFA that recognizes the language of (0◦1)∗ ◦(0∪1) (the alphabet is
      Σ = {0, 1}). Include both a state diagram and a formal specification of your automaton
      as a 5-tuple.
      5. (10 points) Let A be the language of strings over Σ = {0, 1} from the first day of class:
      A = {1
      a01b01a+b
      : a, b ≥ 0}. Prove that A is not regular. (An informal interpretation
      of this result is: DFAs cannot add in unary) Hint: 1
      6. (15 points) We see in class on 4/15 how to convert any k-state NFA into an equivalent
      2
      k
      -state DFA. This problem shows that this exponential blowup in the number of states
      is necessary. Let A ⊂ {0, 1}
      ∗ be the set of all strings (of length at least 101) that have
      a 0 exactly 100 places from the right hand end. That is
      A = {w : |w| ≥ 101, w|w|−100 = 0}. (1)
      (a) (5 points) Draw the state diagram for an NFA with 101102 states that recognizes
      A. (You can use “· · · ” and don’t have to draw all 101102 states, as long as it’s
      clear what the states/transitions would be in the omitted states) [Ray: Update: I
      think you need 102 states. If you have 103 or 104 states, that’s fine.]
      (b) (10 points) Show that no DFA on less than 2100 states can recognize A. Hint:2
      1
      In this class, we learn several methods for proving a language A is regular: constructing a DFA recognizing A, constructing an NFA recognizing A, finding a regular expression for A. However, we only learn
      one method for proving a language is not regular. What is it?
      2Give a proof by contradiction and assume such a DFA exists. Apply pigeonhole to all 2100 strings of
      length 100 to get two strings x and y of length 100 that end up at the same state after digesting. Derive a
      contradiction by considering the strings xz and yz for some carefully chosen string z.
      (c) Sara Krehbiel, Ray Li 2

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

      標簽:

      掃一掃在手機打開當前頁
    • 上一篇:COMP2013代做、代寫Data Structures and Algorithms
    • 下一篇:代做COMP3211、Python/Java程序代寫
    • 無相關信息
      昆明生活資訊

      昆明圖文信息
      蝴蝶泉(4A)-大理旅游
      蝴蝶泉(4A)-大理旅游
      油炸竹蟲
      油炸竹蟲
      酸筍煮魚(雞)
      酸筍煮魚(雞)
      竹筒飯
      竹筒飯
      香茅草烤魚
      香茅草烤魚
      檸檬烤魚
      檸檬烤魚
      昆明西山國家級風景名勝區
      昆明西山國家級風景名勝區
      昆明旅游索道攻略
      昆明旅游索道攻略
    • 幣安官網下載 福建中專招生網 NBA直播 WPS下載

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 kmw.cc Inc. All Rights Reserved. 昆明網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      主站蜘蛛池模板: 久久亚洲AV无码精品色午夜 | 国模无码一区二区三区| av无码精品一区二区三区四区| 久久久久亚洲AV无码专区桃色 | 亚洲一区二区无码偷拍| 无码av不卡一区二区三区| 狠狠躁夜夜躁无码中文字幕| 精品无码一区在线观看| 超清无码一区二区三区| 国产精品无码AV不卡| 日韩精品久久无码人妻中文字幕| 国产成人无码精品一区不卡| 久久亚洲AV成人出白浆无码国产| 精品无码av无码专区| 中日韩精品无码一区二区三区| 国产午夜精华无码网站 | 免费A级毛片无码A∨| 国产亚洲?V无码?V男人的天堂| 九九在线中文字幕无码| 老司机亚洲精品影院无码 | 亚无码乱人伦一区二区| 无码精品国产一区二区三区免费| 亚洲国产精品无码久久九九| 精品久久久无码人妻中文字幕豆芽| 国产激情无码一区二区| 丰满日韩放荡少妇无码视频| 日韩精品无码免费视频| 无码av大香线蕉伊人久久| 亚洲国产精品无码久久九九大片| 色情无码WWW视频无码区小黄鸭| 国产aⅴ无码专区亚洲av麻豆 | 亚洲动漫精品无码av天堂| 一本大道无码日韩精品影视_| 国产精品无码一区二区在线| 亚洲AV无码成人精品区狼人影院 | 99国产精品无码| 亚洲美免无码中文字幕在线| 日韩欧精品无码视频无删节 | 人妻无码久久久久久久久久久| 大胆日本无码裸体日本动漫 | 国产精品亚洲αv天堂无码|